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Code Flow
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Code Features

LEAPR+THERMR New Code

Coherent inelastic N/A Implemented

Coherent elastic Approximate Exact

Short Scattering Time
(SCT) approximation

Yes No

Integral against α
differential cross section

Numerical
Default: Analytical
Optional: Numerical

α, β gridding User input
Default: Automatic grid 

Optional: User input

Parallel Computing N/A
Yes

Using OpenMP

Graphic User Interface N/A Yes
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Scattering Law 𝑆(𝛼, 𝛽)
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Differential Scattering Cross Section
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Integrated Cross Section
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Coherent inelastic

one-phonon correction routine

New Code

Supported structure Any crystal structure

Supported material Any material

Compound material Yes

Debye-Waller Factor Exact

Polarization vector Exact

Sampling of the full reciprocal space Yes

Structure Factor Exact



One-phonon Corrected

Scattering Law 𝑆(𝛼, 𝛽)
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Coherent Elastic Routine

LEAPR New routine

Supported structure Hexagonal, FCC, BCC Any crystal structure

Supported material
Graphite, beryllium, 

beryllium oxide, aluminum, 
lead, iron

Any material

Compound material 2 elements with ratio 1:1
Any number of elements with 

any ratio

Cubic Approximation Yes No

Atom sites approximation Yes No

Coherent Elastic Scattering 
Cross Section

Over Ewald Sphere
On every reciprocal lattice

point 

Need to modify source code if 
calculating other materials

Yes No



Coherent Elastic Cross 

Section of α-SiO2

 The calculation shows around 15% divergence at low and 
high energies between the two methods in the cross 
sections of α-SiO2.
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Code Implementation 

 Calculations and ENDF TSL library formatting modules were 
implemented by FORTRAN 95 using modulus design

MF=1, MT=451 formatting was done by Python

 Parallel computing was realized by OpenMP 4.0 bindings

 GUI implemented by cross platform QT® C++ API



Summary

 The more general coherent elastic and coherent inelastic 
calculation routines were implemented.

 Approximations such as SCT approximation, cubic 
approximation, atom site approximation and incoherent 
approximation were removed or relaxed in the new code. 

 Tested the new code by comparing to NJOY result and 
experimental measurements.

 The new code is designed using modern C++ and 
FORTRAN95 language with GUI and parallel computation 
capability.


